. For this project, it will be used the 'Breast Cancer Wisconsin (Diagnostic) Database', as source for the ML model for predicting if a cancer is either Benign or Malignant, based on many features further described.
#Load the datafromsklearn.datasetsimportload_breast_cancercancer=load_breast_cancer()
Here it has some information describing the data:
In [5]:
print(cancer['DESCR'])
.. _breast_cancer_dataset:
Breast cancer wisconsin (diagnostic) dataset
--------------------------------------------
**Data Set Characteristics:**
:Number of Instances: 569
:Number of Attributes: 30 numeric, predictive attributes and the class
:Attribute Information:
- radius (mean of distances from center to points on the perimeter)
- texture (standard deviation of gray-scale values)
- perimeter
- area
- smoothness (local variation in radius lengths)
- compactness (perimeter^2 / area - 1.0)
- concavity (severity of concave portions of the contour)
- concave points (number of concave portions of the contour)
- symmetry
- fractal dimension ("coastline approximation" - 1)
The mean, standard error, and "worst" or largest (mean of the three
worst/largest values) of these features were computed for each image,
resulting in 30 features. For instance, field 0 is Mean Radius, field
10 is Radius SE, field 20 is Worst Radius.
- class:
- WDBC-Malignant
- WDBC-Benign
:Summary Statistics:
===================================== ====== ======
Min Max
===================================== ====== ======
radius (mean): 6.981 28.11
texture (mean): 9.71 39.28
perimeter (mean): 43.79 188.5
area (mean): 143.5 2501.0
smoothness (mean): 0.053 0.163
compactness (mean): 0.019 0.345
concavity (mean): 0.0 0.427
concave points (mean): 0.0 0.201
symmetry (mean): 0.106 0.304
fractal dimension (mean): 0.05 0.097
radius (standard error): 0.112 2.873
texture (standard error): 0.36 4.885
perimeter (standard error): 0.757 21.98
area (standard error): 6.802 542.2
smoothness (standard error): 0.002 0.031
compactness (standard error): 0.002 0.135
concavity (standard error): 0.0 0.396
concave points (standard error): 0.0 0.053
symmetry (standard error): 0.008 0.079
fractal dimension (standard error): 0.001 0.03
radius (worst): 7.93 36.04
texture (worst): 12.02 49.54
perimeter (worst): 50.41 251.2
area (worst): 185.2 4254.0
smoothness (worst): 0.071 0.223
compactness (worst): 0.027 1.058
concavity (worst): 0.0 1.252
concave points (worst): 0.0 0.291
symmetry (worst): 0.156 0.664
fractal dimension (worst): 0.055 0.208
===================================== ====== ======
:Missing Attribute Values: None
:Class Distribution: 212 - Malignant, 357 - Benign
:Creator: Dr. William H. Wolberg, W. Nick Street, Olvi L. Mangasarian
:Donor: Nick Street
:Date: November, 1995
This is a copy of UCI ML Breast Cancer Wisconsin (Diagnostic) datasets.
https://goo.gl/U2Uwz2
Features are computed from a digitized image of a fine needle
aspirate (FNA) of a breast mass. They describe
characteristics of the cell nuclei present in the image.
Separating plane described above was obtained using
Multisurface Method-Tree (MSM-T) [K. P. Bennett, "Decision Tree
Construction Via Linear Programming." Proceedings of the 4th
Midwest Artificial Intelligence and Cognitive Science Society,
pp. 97-101, 1992], a classification method which uses linear
programming to construct a decision tree. Relevant features
were selected using an exhaustive search in the space of 1-4
features and 1-3 separating planes.
The actual linear program used to obtain the separating plane
in the 3-dimensional space is that described in:
[K. P. Bennett and O. L. Mangasarian: "Robust Linear
Programming Discrimination of Two Linearly Inseparable Sets",
Optimization Methods and Software 1, 1992, 23-34].
This database is also available through the UW CS ftp server:
ftp ftp.cs.wisc.edu
cd math-prog/cpo-dataset/machine-learn/WDBC/
.. topic:: References
- W.N. Street, W.H. Wolberg and O.L. Mangasarian. Nuclear feature extraction
for breast tumor diagnosis. IS&T/SPIE 1993 International Symposium on
Electronic Imaging: Science and Technology, volume 1905, pages 861-870,
San Jose, CA, 1993.
- O.L. Mangasarian, W.N. Street and W.H. Wolberg. Breast cancer diagnosis and
prognosis via linear programming. Operations Research, 43(4), pages 570-577,
July-August 1995.
- W.H. Wolberg, W.N. Street, and O.L. Mangasarian. Machine learning techniques
to diagnose breast cancer from fine-needle aspirates. Cancer Letters 77 (1994)
163-171.
PCA is a statistical technique for reducing the dimensionality of a dataset. This is accomplished by linearly transforming the data into a new coordinate system where (most of) the variation in the data can be described with fewer dimensions than the initial data .
Support Vector Machines are supervised learning models with associated learning algorithms. Given a set of training examples, each marked as belonging to one of two categories, an SVM training algorithm builds a model that assigns new examples to one category or the other, making it a non-probabilistic binary linear classifier.
SVM maps training examples to points in space so as to maximise the width of the gap between the two categories. New examples are then mapped into that same space and predicted to belong to a category based on which side of the gap they fall.
Starting the project tacking a look into the Data. The predicted variable array is stored on cancer['target'], and the features are stored at cancer['data'].
Let's take a look into the df head, to check which kind of data we are working with:
To better our ML model, before decomposing it, we need to scale the columns into a standard scaler. It will help the model to better understand the influence of data points, when applying linear transformations:
In [12]:
#Scale the componentsfromsklearn.preprocessingimportStandardScaler#create the scaler:scaler=StandardScaler()scaler.fit(df)#transform the Featuresdf_scaled=scaler.transform(df)
Now, first thing to do is to reduce the features into two components of their linear transformations (So that we can plot the data and see how it is classified)
In [14]:
fromsklearn.decompositionimportPCA
In [17]:
#fit transform features to decompose them into 2 components:pca=PCA(n_components=2)pca.fit(df_scaled)x_pca=pd.DataFrame(pca.transform(df_scaled),columns=['Component_1','Component_2'])
Finally, let's plot the data using the x_pca DF and the labels stored for each row in the cancer['target']
In [47]:
#Plot the data to from its components:plt.figure(figsize=(8,6))plt.scatter(x_pca['Component_1'],x_pca['Component_2'],c=cancer['target'],cmap='plasma')plt.xlabel('First principal component')plt.ylabel('Second Principal Component')plt.title('Benign vs malign brest cancer (PCA)')sns.set_style('darkgrid')plt.tight_layout()
Next step will be split the data into train/test. It will be used 80% ofit to train;
Then, to find the best classification line, it will be used the scikit-learn SVC() method;
OBS: To select the right 'C' and 'gamma' parameters, we will use a GridSearch method to test a small range of parameters. Because the test data is a bit small, it will be applied a Cross Validation on each combination of parameters;
fromsklearn.svmimportSVCfromsklearn.model_selectionimportGridSearchCVmodel=SVC()#creating a dist of params to testparam_grid={'C':[0.1,1,10,100,1000],'gamma':[1,0.1,0.01,0.001,0.0001]}S_grid=GridSearchCV(model,param_grid,verbose=3,refit=True)S_grid.fit(X_train,y_train)#fit the grid_search
Fitting 5 folds for each of 25 candidates, totalling 125 fits
[CV 1/5] END .................................C=0.1, gamma=1; total time= 0.1s
[CV 2/5] END .................................C=0.1, gamma=1; total time= 0.0s
[CV 3/5] END .................................C=0.1, gamma=1; total time= 0.0s
[CV 4/5] END .................................C=0.1, gamma=1; total time= 0.0s
[CV 5/5] END .................................C=0.1, gamma=1; total time= 0.0s
[CV 1/5] END ...............................C=0.1, gamma=0.1; total time= 0.0s
[CV 2/5] END ...............................C=0.1, gamma=0.1; total time= 0.0s
[CV 3/5] END ...............................C=0.1, gamma=0.1; total time= 0.0s
[CV 4/5] END ...............................C=0.1, gamma=0.1; total time= 0.0s
[CV 5/5] END ...............................C=0.1, gamma=0.1; total time= 0.0s
[CV 1/5] END ..............................C=0.1, gamma=0.01; total time= 0.0s
[CV 2/5] END ..............................C=0.1, gamma=0.01; total time= 0.0s
[CV 3/5] END ..............................C=0.1, gamma=0.01; total time= 0.0s
[CV 4/5] END ..............................C=0.1, gamma=0.01; total time= 0.0s
[CV 5/5] END ..............................C=0.1, gamma=0.01; total time= 0.0s
[CV 1/5] END .............................C=0.1, gamma=0.001; total time= 0.0s
[CV 2/5] END .............................C=0.1, gamma=0.001; total time= 0.0s
[CV 3/5] END .............................C=0.1, gamma=0.001; total time= 0.0s
[CV 4/5] END .............................C=0.1, gamma=0.001; total time= 0.0s
[CV 5/5] END .............................C=0.1, gamma=0.001; total time= 0.0s
[CV 1/5] END ............................C=0.1, gamma=0.0001; total time= 0.0s
[CV 2/5] END ............................C=0.1, gamma=0.0001; total time= 0.0s
[CV 3/5] END ............................C=0.1, gamma=0.0001; total time= 0.0s
[CV 4/5] END ............................C=0.1, gamma=0.0001; total time= 0.0s
[CV 5/5] END ............................C=0.1, gamma=0.0001; total time= 0.0s
[CV 1/5] END ...................................C=1, gamma=1; total time= 0.0s
[CV 2/5] END ...................................C=1, gamma=1; total time= 0.0s
[CV 3/5] END ...................................C=1, gamma=1; total time= 0.0s
[CV 4/5] END ...................................C=1, gamma=1; total time= 0.0s
[CV 5/5] END ...................................C=1, gamma=1; total time= 0.0s
[CV 1/5] END .................................C=1, gamma=0.1; total time= 0.0s
[CV 2/5] END .................................C=1, gamma=0.1; total time= 0.0s
[CV 3/5] END .................................C=1, gamma=0.1; total time= 0.0s
[CV 4/5] END .................................C=1, gamma=0.1; total time= 0.0s
[CV 5/5] END .................................C=1, gamma=0.1; total time= 0.0s
[CV 1/5] END ................................C=1, gamma=0.01; total time= 0.0s
[CV 2/5] END ................................C=1, gamma=0.01; total time= 0.0s
[CV 3/5] END ................................C=1, gamma=0.01; total time= 0.0s
[CV 4/5] END ................................C=1, gamma=0.01; total time= 0.0s
[CV 5/5] END ................................C=1, gamma=0.01; total time= 0.0s
[CV 1/5] END ...............................C=1, gamma=0.001; total time= 0.0s
[CV 2/5] END ...............................C=1, gamma=0.001; total time= 0.0s
[CV 3/5] END ...............................C=1, gamma=0.001; total time= 0.0s
[CV 4/5] END ...............................C=1, gamma=0.001; total time= 0.0s
[CV 5/5] END ...............................C=1, gamma=0.001; total time= 0.0s
[CV 1/5] END ..............................C=1, gamma=0.0001; total time= 0.0s
[CV 2/5] END ..............................C=1, gamma=0.0001; total time= 0.0s
[CV 3/5] END ..............................C=1, gamma=0.0001; total time= 0.0s
[CV 4/5] END ..............................C=1, gamma=0.0001; total time= 0.0s
[CV 5/5] END ..............................C=1, gamma=0.0001; total time= 0.0s
[CV 1/5] END ..................................C=10, gamma=1; total time= 0.0s
[CV 2/5] END ..................................C=10, gamma=1; total time= 0.0s
[CV 3/5] END ..................................C=10, gamma=1; total time= 0.0s
[CV 4/5] END ..................................C=10, gamma=1; total time= 0.0s
[CV 5/5] END ..................................C=10, gamma=1; total time= 0.0s
[CV 1/5] END ................................C=10, gamma=0.1; total time= 0.0s
[CV 2/5] END ................................C=10, gamma=0.1; total time= 0.0s
[CV 3/5] END ................................C=10, gamma=0.1; total time= 0.0s
[CV 4/5] END ................................C=10, gamma=0.1; total time= 0.0s
[CV 5/5] END ................................C=10, gamma=0.1; total time= 0.0s
[CV 1/5] END ...............................C=10, gamma=0.01; total time= 0.0s
[CV 2/5] END ...............................C=10, gamma=0.01; total time= 0.0s
[CV 3/5] END ...............................C=10, gamma=0.01; total time= 0.0s
[CV 4/5] END ...............................C=10, gamma=0.01; total time= 0.0s
[CV 5/5] END ...............................C=10, gamma=0.01; total time= 0.0s
[CV 1/5] END ..............................C=10, gamma=0.001; total time= 0.0s
[CV 2/5] END ..............................C=10, gamma=0.001; total time= 0.0s
[CV 3/5] END ..............................C=10, gamma=0.001; total time= 0.0s
[CV 4/5] END ..............................C=10, gamma=0.001; total time= 0.0s
[CV 5/5] END ..............................C=10, gamma=0.001; total time= 0.0s
[CV 1/5] END .............................C=10, gamma=0.0001; total time= 0.0s
[CV 2/5] END .............................C=10, gamma=0.0001; total time= 0.0s
[CV 3/5] END .............................C=10, gamma=0.0001; total time= 0.0s
[CV 4/5] END .............................C=10, gamma=0.0001; total time= 0.0s
[CV 5/5] END .............................C=10, gamma=0.0001; total time= 0.0s
[CV 1/5] END .................................C=100, gamma=1; total time= 0.0s
[CV 2/5] END .................................C=100, gamma=1; total time= 0.0s
[CV 3/5] END .................................C=100, gamma=1; total time= 0.0s
[CV 4/5] END .................................C=100, gamma=1; total time= 0.0s
[CV 5/5] END .................................C=100, gamma=1; total time= 0.0s
[CV 1/5] END ...............................C=100, gamma=0.1; total time= 0.0s
[CV 2/5] END ...............................C=100, gamma=0.1; total time= 0.0s
[CV 3/5] END ...............................C=100, gamma=0.1; total time= 0.0s
[CV 4/5] END ...............................C=100, gamma=0.1; total time= 0.0s
[CV 5/5] END ...............................C=100, gamma=0.1; total time= 0.0s
[CV 1/5] END ..............................C=100, gamma=0.01; total time= 0.0s
[CV 2/5] END ..............................C=100, gamma=0.01; total time= 0.0s
[CV 3/5] END ..............................C=100, gamma=0.01; total time= 0.0s
[CV 4/5] END ..............................C=100, gamma=0.01; total time= 0.0s
[CV 5/5] END ..............................C=100, gamma=0.01; total time= 0.0s
[CV 1/5] END .............................C=100, gamma=0.001; total time= 0.0s
[CV 2/5] END .............................C=100, gamma=0.001; total time= 0.0s
[CV 3/5] END .............................C=100, gamma=0.001; total time= 0.0s
[CV 4/5] END .............................C=100, gamma=0.001; total time= 0.0s
[CV 5/5] END .............................C=100, gamma=0.001; total time= 0.0s
[CV 1/5] END ............................C=100, gamma=0.0001; total time= 0.0s
[CV 2/5] END ............................C=100, gamma=0.0001; total time= 0.0s
[CV 3/5] END ............................C=100, gamma=0.0001; total time= 0.0s
[CV 4/5] END ............................C=100, gamma=0.0001; total time= 0.0s
[CV 5/5] END ............................C=100, gamma=0.0001; total time= 0.0s
[CV 1/5] END ................................C=1000, gamma=1; total time= 0.0s
[CV 2/5] END ................................C=1000, gamma=1; total time= 0.0s
[CV 3/5] END ................................C=1000, gamma=1; total time= 0.0s
[CV 4/5] END ................................C=1000, gamma=1; total time= 0.0s
[CV 5/5] END ................................C=1000, gamma=1; total time= 0.0s
[CV 1/5] END ..............................C=1000, gamma=0.1; total time= 0.0s
[CV 2/5] END ..............................C=1000, gamma=0.1; total time= 0.0s
[CV 3/5] END ..............................C=1000, gamma=0.1; total time= 0.0s
[CV 4/5] END ..............................C=1000, gamma=0.1; total time= 0.0s
[CV 5/5] END ..............................C=1000, gamma=0.1; total time= 0.0s
[CV 1/5] END .............................C=1000, gamma=0.01; total time= 0.0s
[CV 2/5] END .............................C=1000, gamma=0.01; total time= 0.0s
[CV 3/5] END .............................C=1000, gamma=0.01; total time= 0.0s
[CV 4/5] END .............................C=1000, gamma=0.01; total time= 0.0s
[CV 5/5] END .............................C=1000, gamma=0.01; total time= 0.0s
[CV 1/5] END ............................C=1000, gamma=0.001; total time= 0.0s
[CV 2/5] END ............................C=1000, gamma=0.001; total time= 0.0s
[CV 3/5] END ............................C=1000, gamma=0.001; total time= 0.0s
[CV 4/5] END ............................C=1000, gamma=0.001; total time= 0.0s
[CV 5/5] END ............................C=1000, gamma=0.001; total time= 0.0s
[CV 1/5] END ...........................C=1000, gamma=0.0001; total time= 0.0s
[CV 2/5] END ...........................C=1000, gamma=0.0001; total time= 0.0s
[CV 3/5] END ...........................C=1000, gamma=0.0001; total time= 0.0s
[CV 4/5] END ...........................C=1000, gamma=0.0001; total time= 0.0s
[CV 5/5] END ...........................C=1000, gamma=0.0001; total time= 0.0s
Out of 114 samples of brest cancer in the test data, the model predicted 109 correctly and 5 incorrectly (0.96 accuracy). The most important is to reduce False Negative predictions (i.e, predicting the cancer is BENIGN, when it is MALIGNANT), as the risk is much greater of resulting in complications to the pacient. In test, out of 5 misevaluations, 3 were False Negatives, and two were False Positives;
Classification Report:
Looking at the Classification Report, if we assess the model by Rightfully classifying a Malignant Cancer, we can only aprove the model if we accept a minimum Recall of 96%. On the other hand, if we consider the misdiagnosis equaly important, we can only aprove the model if we accept a f1-score of above 97%.